Junction Terminal Block

(Spring Clamp Terminal Type)
MODEL

FA1-TE2SD32XY
FA1-TE2SV16XY
FA1-TE2SD40P
FA1-TE2SV20P
FA1-TE2SV40EX

User's Manual
(Detailed Edition)

SAFETY PRECAUTIONS

(Read these precautions before using the FA Goods products.)
Before using the products, please read this manual and the relevant manuals carefully, and pay full attention to safety to handle the products correctly.
The precautions given in this manual are concerned with the FA Goods products only.
For the safety precautions of the programmable controller system, refer to the user's manual for the programmable controller used.
If the equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.
In this manual, the safety precautions are classified into two levels: "乌WARNING" and " \triangleq CAUTION".

WARNING

. CAUTION

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under " $\widehat{\text { CAUTION" may lead }}$ to serious consequences.
Observe the precautions of both levels because they are important for personal and system safety.

- Configure safety circuits externally to ensure that the entire system operates safely even when a fault occurs in the external power supply, the programmable controller, or the products. Failure to do so may result in an accident due to an incorrect output or malfunction.
(1) Emergency stop circuits, protection circuits, and protective interlock circuits for conflicting operations (such as forward/reverse rotations or upper/lower limit positioning) must be configured externally.
(2) Outputs may remain on or off due to a failure of a component such as a relay, transistor, and triac used for digital signal converter outputs. Configure an external circuit for monitoring output signals that could cause a serious accident.
- In an output circuit for digital signal converter outputs, when a load current exceeding the rated current or an overcurrent caused by a load short-circuit flows for a long time, it may cause smoke and fire. To prevent this, configure an external safety circuit, such as a fuse.
-Configure a circuit so that the programmable controller is turned on first and then the external power supply. If the external power supply is turned on first, an accident may occur due to an incorrect output or malfunction.

[Design Precautions]

-Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 100 mm (3.94 inches) or more between them. Failure to do so may result in malfunction or failure due to noise.
-When using a terminal block conversion module for a high-speed counter module, do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 150 mm (5.91 inches) or more between them. Failure to do so may result in malfunction or failure due to noise.

- Keep a distance of 100 mm (3.94 inches) or more between a thermocouple or RTD (Resistance Temperature Detector) and the main circuit line or AC control lines. Also, keep the thermocouple or RTD away from a circuit that includes harmonics, such as a high-voltage circuit and a load circuit of an inverter. If not, the thermocouple or RTD is more likely to be affected by noise, surges, and induction.
-At power-on or power-off, a voltage may occur or a current may flow between output terminals for a moment. To use an analog signal converter or analog terminal block conversion module, start the control after analog outputs become stable.
-Do not place an analog signal converter or analog terminal block conversion module near a device that generates magnetic noise.
-When a device such as a lamp, heater, or solenoid valve is controlled using a module for digital signal converter outputs, a large current (approximately 10 times greater than normal) may flow when the output is turned from off to on. Therefore, select a module for digital signal converter outputs that has a sufficient current rating.

•Shut off the external power supply (all phases) used in the system before installation. Failure to do so may result in electric shock
or damage to the products.

[Installation Precautions]

\square

CAUTION

\bullet Use products in an environment that meets the general specifications in this manual. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the products.

- Securely fix the products with a DIN rail or screws. Incorrect installation may cause malfunction, failure, or drop of the module. When using the products in an environment of frequent vibrations, fix the products with screws.
-Tighten the screws within the specified torque range. Undertightening can cause drop of the screw, short circuit, or malfunction. Overtightening can damage the screw and/or products, resulting in drop, short circuit, or malfunction.
- Attach DIN rail stoppers on the right and left sides of the spring clamp conversion module (FA1-TESV**) to fix the module securely.
- Shut off the external power supply (all phases) used in the system before mounting or removing the products. Failure to do so may result in damage to, malfunction of, or failure of the products.
-Do not directly touch any conductive parts and electronic components of the products. Failure to do so may cause malfunction or failure of the products.
- Install the products in the correct orientation if it is specified. Failure to do so may result in damage to or deterioration of the products.
-When drilling screw holes, be careful not to drop chips into the inside of the products or conductive parts. Such foreign matter can cause a fire, failure, or malfunction.
-When using modules for replacing digital signal converters or signal conversion modules, use them in the correct combination. Incorrect combination may cause failure.
- Shut off the power supply before installing/removing a module for replacing digital signal converters. Failure to do so may cause failure or malfunction.
- Securely mount a module for replacing digital signal converters and signal conversion module on a digital signal converter and installation base. Failure to do so may cause damage to or drop of the products, or malfunction due to poor contact. Follow the correct procedure to install/remove them. Failure to do so may cause damage to or drop of the products, or malfunction due to poor contact.
- When a module for digital signal converters or signal conversion module is mounted on a digital signal converter or installation base, hold the digital signal converter or installation base to transport them or install them to a panel. Holding the module for digital signal converters or signal conversion module may cause drop or failure of the digital signal converter or installation base.

-Shut off the external power supply (all phases) used in the system before wiring. Failure to do so may result in electric shock or
damage to the products.
•After wiring, attach the included terminal cover to the products before turning them on for operation. Failure to do so may result in
electric shock.

[Wiring Precautions]

CAUTION

\bullet Use applicable solderless terminals and tighten them within the specified torque range. Failure to do so may cause failure, damage, or malfunction.
-Check the rated voltage and terminal layout before wiring to the products, and connect the cables correctly. Connecting a power supply with a different voltage rating or incorrect wiring may cause a fire or failure.
-Do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 100 mm or more between them. Failure to do so may result in malfunction due to noise.
-When using a terminal block conversion module for a high-speed counter module, do not install the control lines or communication cables together with the main circuit lines or power cables. Keep a distance of 150 mm (5.91 inches) or more between them. Failure to do so may result in malfunction or failure due to noise.

- Keep a distance of 100 mm (3.94 inches) or more between a thermocouple or RTD (Resistance Temperature Detector) and the main circuit line or AC control lines. Also, keep the thermocouple or RTD away from a circuit that includes harmonics, such as a high-voltage circuit and a load circuit of an inverter. If not, the thermocouple or RTD is more likely to be affected by noise, surges, and induction.
-Do not place an analog signal converter or analog terminal block conversion module near a device that generates magnetic noise.
\bullet Place the cables in a duct or clamp them. If not, dangling cable may swing or inadvertently be pulled, resulting in damage to the products or cables or malfunction due to poor contact.
\bullet Tighten the terminal screws within the specified torque range. Undertightening can cause short circuit, fire, or malfunction.
Overtightening can damage the screw and/or products, resulting in drop, short circuit, or malfunction.
-Tighten the connector screws within the specified torque range. Undertightening can cause short circuit, fire, or malfunction. Overtightening can damage the screw and/or products, resulting in drop, short circuit, fire, or malfunction.
- Securely connect connectors to the products. Failure to do so may cause malfunction.
- When disconnecting a cable from the products, do not pull the cable by the cable part. For the cable with connector, hold the connector part of the cable. For the cable connected to the terminal block, loosen the terminal screw. Pulling the cable connected to the products may result in malfunction or damage to the products or cable.
- Check the interface type and correctly connect the cable. Incorrect wiring (connecting the cable to an incorrect interface) may cause failure of the products and external device.
- Prevent foreign matter such as dust or wire chips from entering the products. Such foreign matter can cause a fire, failure, or malfunction.
-The products must be installed in control panels. Connect the main power supply to the products in the control panel through a relay terminal block. Wiring and replacement of the products must be performed by qualified maintenance personnel with knowledge of protection against electric shock.
-When connecting the products with a programmable controller, check that the product configuration is correct. An incorrect configuration may cause failure or malfunction.
-Use the products with no force applied to their connectors. Applied force may cause failure or disconnection.
- Attach protective covers or signal conversion modules to unused connectors or empty slots of the products. Failure to do so may cause a fire, failure, or malfunction due to foreign matter.
-When using modules for replacing digital signal converters or signal conversion modules, use them in the correct combination. Incorrect combination may cause failure of a programmable controller, digital signal converter, installation base, or external device.
- Individually ground the FG terminal of the products with a ground resistance of 100 ohms or less. Failure to do so may result in electric shock or malfunction.

[Startup and Maintenance Precautions]

•Do not touch any terminal while power is on. Doing so will cause electric shock or malfunction.
- Shut off the external power supply (all phases) used in the system before cleaning the products or retightening the terminal screws,
connector screws, or products fixing screws. Failure to do so may result in electric shock or cause failure or malfunction of the
products. Undertightening can cause drop of the screw, short circuit, or malfunction. Overtightening can damage the screw and/or
products, resulting in drop, short circuit, or malfunction.

[Startup and Maintenance Precautions]

CAUTION
- Do not disassemble or modify the products. Doing so may cause failure, malfunction, injury, or a fire.
- Use any radio communication device such as a cellular phone or PHS (Personal Handy-phone System) more than 25 cm away in
all directions from the programmable controller and products. Failure to do so may cause malfunction.
- Shut off the external power supply (all phases) used in the system before mounting or removing the products. Failure to do so may
cause failure or malfunction of or damage to the products.
-After the first use of the products, do not connect/remove the products and cables more than 50 times. Exceeding the limit may
cause malfunction.
- Startup and maintenance of a control panel must be performed by qualified maintenance personnel with knowledge of protection
against electric shock. Lock the control panel so that only qualified maintenance personnel can operate it.
- This product displays the following symbol marks. This symbol mark indicates that a copper wire with a temperature rating of $75^{\circ} \mathrm{C}$
or higher is used for wires connected to this product, and that this product is susceptible to static electricity. Before handling the
products, touch a conducting object such as a grounded metal to discharge the static electricity from the human body. Failure to
do so may cause failure or malfunction of the products.

| CAUTION |
| :--- | :--- |
| \bullet When disposing of the products, treat them as industrial waste. |

[Transportation Precautions]

-Do not apply shock that exceeds the shock resistance described in the general specifications during transportation since the
products are precision devices. Doing so may cause failure of the module.
-The halogens (such as fluorine, chlorine, bromine, and iodine), which are contained in a fumigant used for disinfection and pest
control of wood packaging materials, may cause failure of the products. Prevent the entry of fumigant residues into the product
or consider other methods (such as heat treatment) instead of fumigation. The disinfection and pest control measures must be
applied to unprocessed raw wood.

Low Voltage Directives

Compliance with the EMC Directive, which is one of the EU directives, has been mandatory for products sold within EU member states since 1996 as well as compliance with the Low Voltage Directive since 1997.
For products compliant to the Low Voltage Directives, their manufacturers are required to declare compliance and affix the CE marking.
(1) Sales representative in EU member states

The sales representative in EU member states is:
Company: MITSUBISHI ELECTRIC EUROPE B.V.
Address: Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany
(2) Method of ensuring compliance* ${ }^{*}$

To ensure that FA Goods products maintain Low Voltage Directives when incorporated into other machinery or equipment, certain measures may be necessary. Please refer to "EMC and Low Voltage Directives Compliant Manual" (50D-FA9010-108).
*1: The FA1-TE2SD32XY,FA1-TE2SV16XY, FA1-TE2SD40P, and FA1-TE2SV20P are excluded.
*The manual number is given on the bottom left of the last page.

Print Date	${ }^{*}$ Manual Number	Revision
February, 2023	50D-FG0672	First edition
September, 2023	50D-FG0672-A	$\begin{array}{l}\text { Added parts } \\ \text { Connectable modules addition: } \\ \text { Q172DLX, Q172LX } \\ \text { Q173DPX, Q173PX, Q173PX-S1 } \\ \text { Q173DSXY }\end{array}$
November, 2023	50D-FG0672-B	$\begin{array}{l}\text { 7-2. WIRING EXAMPLE 24 } \\ \text { 9. CONNECTABLE MODULES }\end{array}$
		$\begin{array}{ll}\text { Added or modified parts }\end{array}$
7-2. WIRING EXAMPLE		

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Engineering cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

CONTENTS

SAFETY PRECAUTIONS -2
Low Voltage Directives 7
REVISIONS 8
CONTENTS 9

1. INTRODUCTION 10
2. GENERAL SPECIFICATIONS 10
3. PERFORMANCE SPECIFICATIONS 11
3-1. FA1-TE2SD32XY, FA1-TE2SV16XY 11
3-2. FA1-TE2SD40P, FA1-TE2SV20P 11
3-3. FA1-TE2SV40EX 12
4. PARTS NAMES 13
4-1. FA1-TE2SD32XY, FA1-TE2SD40P 13
4-2. FA1-TE2SV16XY, FA1-TE2SV20P 14
4-3. FA1-TE2SV40EX 15
5. CONNECTING METHOD 16
5-1.Connection example with a connector module of a programmable controller. 16
$5-2$. Connecting method 17
$5-3$. Wiring to a spring clamp terminal block 19
6. MOUNTING DIRECTION 21
7. EXTERNAL CONNECTION EXAMPLE 22
7-1. INTERNAL WIRING DIAGRAM 22
7-2. WIRING EXAMPLE 25
8. APPLICABLE SOLDERLESS TERMINALS (Ferrule) 36
9. CONNECTABLE MODULES 37
10. EXTERNAL DIMENSIONS 46
11. PRECAUTIONS 47
12. TROUBLESHOOTING 47
13. GRATIS WARRANTY TERMS AND GRATIS WARRANTY RANGE 48
14. EXCLUSION FROM LIABILITY FOR OPPORTUNITY LOSS AND SECONDARY LOSS 48
15. TRADEMARKS 48

1. INTRODUCTION

This manual describes the specifications and handling of the connector \leftrightarrow spring clamp conversion module used in combination with Mitsubishi Electric Corporation programmable controller modules.

2. GENERAL SPECIFICATIONS

Item			Specifications
Operating ambient temperature			-20 to $55^{\circ} \mathrm{C}$
Storage ambient temperature			-25 to $75^{\circ} \mathrm{C}$
Operating ambient humidity			5 to 95\%RH, non-condensing
Storage ambient humidity			5 to 95\%RH, non-condensing
Vibration resistance	Applicable standard		JIS B 3502:2011, IEC 61131-2:2007
	Under intermittent vibration	5 to 8.4 Hz	Half amplitude: 3.5 mm
		8.4 to 150 Hz	Constant acceleration: $9.8 \mathrm{~m} / \mathrm{s}^{2}$ (1G)
		Sweep count	10 times each in X, Y, and Z directions
	Under continuous vibration	5 to 8.4 Hz	Half amplitude: 1.75 mm
		8.4 to 150 Hz	Constant acceleration: $4.9 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G})$
		Sweep count	-
Shock resistance			Compliant with JIS B 3502:2011 and IEC 61131-2:2007 ($147 \mathrm{~m} / \mathrm{s}^{2}$ (15G), 3 times each in X, Y, and Z bidirections)
Operating atmosphere			No corrosive gases
Operating altitude*1			2000m or lower
Installation location			Inside a control panel ${ }^{* 4}$, Indoor use
Overvoltage category*2			11 or less
Pollution degree*3			2 or less

*1: Do not use or store the products under pressure higher than the atmospheric pressure of altitude 0 m . Doing so may cause malfunction.
*2: This category indicates the section of the power supply to which the equipment is assumed to be connected between the public electrical power distribution network and the machinery within premises.
*3: This index indicates the degree to which conductive material is generated in terms of the environment in which the equipment is used.
*4: The enclosure is suitably designed for those specific environmental conditions, as applicable, and enclosure rate meets IP20 and minimum type 1 of UL 50 .

3. PERFORMANCE SPECIFICATIONS

3-1. FA1-TE2SD32XY, FA1-TE2SV16XY

Item	Model	FA1-TE2SD32XY

*1: When connecting this product to the programmable controllers of MELSEC iQ-F series or MELSEC-F series, read the signal name indications 8 to F as 0 to 7 (higher numbers).
*2: The power supply must use CLASS2 power supply or a power supply to the SELV (Safety Extra-Low Voltage) and LIM (Limited Energy Circuit) circuit.
*3: Evaluation for UL certification is conducted under resistance load conditions.
*4: Select wires depending on the current value used.
*5: Use coper wires having temperature rating of $75^{\circ} \mathrm{C}$ or more for the terminal block.
*6: For UL certification, suitable for field wiring when a ferrule is not used.
3-2. FA1-TE2SD40P, FA1-TE2SV20P

| Item | Model | FA1-TE2SD40P |
| :--- | :---: | :---: | FA1-TE2SV20P

[^0]3-3. FA1-TE2SV40EX

Item Model	FA1-TE2SV40EX
Number of points, device numbers	40 points, Common: C10 to C 1 K Common: C20 to C 2 K
Wiring method for common	common 20 points + common 20 points
Rated voltage	DC24V / AC100-240V (+10\%, -15\%), 50Hz/60Hz
Maximum usage voltage	DC30V / AC264V
Maximum usage current* ${ }^{*}$	Common: 6A
Number of points	40 points
Terminal block When a ferrule is not used Applicable (stranded wire or solid wire)	0.2 to $1.5 \mathrm{~mm}^{2}$ (AWG 24-16) Copper wire with a temperature rating of $75^{\circ} \mathrm{C}$ more
(spring clamp type) wire $^{* 2,3,4}$ When a ferrule is used (stranded wire) 	$0.08 \text { to } 0.75 \mathrm{~mm}^{2} \text { (AWG 28-18) }$ Copper wire with a temperature rating of $75^{\circ} \mathrm{C}$ more
Wire strip length	8 mm
Installation method DIN rail	Applicable DIN rail: TH 35-7.5 Fe, TH 35-7.5 AI (IEC60715 compliant)
Withstand voltage	3000VAC for 1minutes
Insulation resistance (initial)	$10 \mathrm{M} \Omega$ or more by 500VDC insulation resistance tester
Weight	Approx. 45 g

*1: Evaluation for UL certification is conducted under resistance load conditions.
*2: Select wires depending on the current value used.
*3: Use coper wires having temperature rating of $75^{\circ} \mathrm{C}$ or more for the terminal block.
*4: For UL certification, suitable for field wiring when a ferrule is not used.

4. PARTS NAMES

4-1. FA1-TE2SD32XY, FA1-TE2SD40P

No.	Name	Description
(1)	Spring clamp terminal block	This is a terminal block to connect external signals.
(2)	Connector for cable connection	This connector is used to connect the cable that connects with the PLC.
(3)	Fixed hook (for vertical mounting)	This hook is for attaching this product to the DIN rail Please use it when mounting vertically.
(4)	DIN rail hook (for vertical mounting)	This hook is for attaching this product to the DIN rail Please use it when mounting vertically.
(5)	Fixed hook (for horizontal mounting)	This hook is for attaching this product to the DIN rail. Please use it when mounting horizontally.
(6)	DIN rail hook (for horizontal mounting)	This hook is for attaching this product to the DIN rail. Please use it when mounting horizontally.

No.	Name	Description
(1)	Spring clamp terminal block	This is a terminal block to connect external signals.
(2)	Connector for cable connection	This connector is used to connect the cable that connects with the PLC.
(3)	Fixed hook	This hook is for attaching this product to the DIN rail.
(4)	DIN rail hook	This hook is for attaching this product to the DIN rail.

(1)

No.	Name	Description
(1)	Spring clamp terminal block	This is a terminal block to connect external signals.
(2)	Fixed hook	This hook is for attaching this product to the DIN rail.
(3)	DIN rail hook	This hook is for attaching this product to the DIN rail.

5. CONNECTING METHOD

5-1.Connection example with a connector module of a programmable controller.

Connect the connector securely to the Programmable controller module using installation screws.

5-2. Connecting method

5-2-1. Installing/removing the module to a DIN rail (for vertical mounting)

(1) Installing
(1) Place the DIN rail installing groove onto the DIN rail to hook the module.
(2) Press the module against the DIN rail until it clicks.

(2)Press
(2) Removing
(1) Insert a flat-blade screwdriver into the DIN rail hook.
(2) Move the DIN rail hook downward.
(3) Remove from the Din rail.

5-2-2. Installing/removing the module to a DIN rail (for horizontal mounting)
FA1-TE2SD32X, FA-TE2SD40P can be mounted horizontally on a DIN rail.
(1) Installing
(1) Place the DIN rail installing groove onto the DIN rail to hook the module.
(2) Press the module against the DIN rail until it clicks.

(2)
(2) Removing
(1) Insert a flat-blade screwdriver into the DIN rail hook.
(2) Move the DIN rail hook downward.
(3) Remove from the Din rail.

5-3. Wiring to a spring clamp terminal block

Wire the spring clamp terminal block according to the information below.
(1) Wires routing
(a) Fabrication on cable insulator

Strip the wire as follows. If the length of the sheath peeled is too long, a short circuit may occur with neighboring wires. If the length is too short, wires might come off. Wire the stripped cable after twisting it to prevent it from becoming loose. In addition, do not solder it.

(b) Using a ferrule terminal Insert wires to a ferrule terminal and crimp it.
Make sure that core wire slightly comes out of the ferrule.
Check the condition of the ferrule terminal after crimping. Do not use a ferrule terminal of which the crimping is inappropriate, or the face is damaged.

* Ferrule terminals crimped onto one wire are applicable to the terminal block of this product.

(c) Inserting wires

The wire with ferrule or solid cable can be inserted into the wire insertion hole.
After inserting, pull the wire lightly to confirm that the wire is surely connected.
For the correct terminal insertion direction, refer to the figure below.
When binding twisted wires, press the push button using the screw driver, then insert the twisted wires into the wire insertion hole.

* Make sure to insert the wire straight as far as it will go.

(2) Wires removal

Press the push button all the way using the screw driver, then pull out the wire.

Use the recommended screwdrivers below to hold down the push button.

Recommended tool (screw driver)		
Manufacturer	Model	Blade edge size
PHOENIX CONTACT	SZS 0,4×2,5 VDE	$2.5 \times 0.4 \mathrm{~mm}$

6. MOUNTING DIRECTION

No mounting direction specified.
Use this product by attaching it to a DIN rail.

7. EXTERNAL CONNECTION EXAMPLE

7-1. INTERNAL WIRING DIAGRAM

(1)

FA1-TE2SD32XY

(2)

FA1-TE2SV16XY

FA1-TE2SV20P

(5) FA1-TE2SV40EX
Cle|

7-2. WIRING EXAMPLE

Examples of signal names when using this product are shown.
(1) Input module

Model	FA1-TE2SV16XY						
Module	RX40C7	RX40C7-TS		RX40NC6B		RX41C4-TS	
Cable	FA-CBL**TMV20	FA1-CB1L**EM1F18		FA-CBL**TMV20		FA1-CB1L**EM2F34	
	No. Signal	No.	Signal	No.	Signal	No.	Signal
	C22 NC	C22	NC	C22	COM	C22	NC
	C21 ${ }^{\text {NC }}$	C21	NC	C21	COM	C21	NC
	C12 COM	C12	COM	C12	DC24V	C12	COM
	C11 COM	C11	COM	C11	DC24V	C11	COM
	OF	0F	XOF	OF	XOF	0F	XOF
	OE	OE	XOE	OE	XOE	OE	XOE
	OD ${ }^{\text {O }}$ XOD	OD	XOD	OD	XOD	OD	XOD
	OC ${ }^{\text {O }}$	OC	XOC	OC	XOC	OC	XOC
	OB ${ }^{\text {O }}$ XOB	OB	XOB	OB	XOB	OB	XOB
	OA XOA	OA	XOA	OA	XOA	OA	XOA
	09 X09	09	X09	09	X09	09	X09
	08 X08	08	X08	08	X08	08	X08
	07×1	07	X07	07	X07	07	X07
	06 X06	06	X06	06	X06	06	X06
	05×105	05	X05	05	X05	05	X05
	04×04	04	X04	04	X04	04	X04
	03 X03	03	X03	03	X03	03	X03
	02 X02	02	X02	02	X02	02	X02
	01 X01	01	X01	01	X01	01	X01
	00 \times X00	00	X00	00	X00	00	X00
Signal							
						No.	Signal
						C22	NC
						C21	NC
						C12	COM
						C11	COM
						OF	X1F
						OE	X1E
						OD	X1D
						OC	X1C
						OB	X1B
						0A	X1A
						09	X19
						08	X18
						07	X17
						06	X16
						05	X15
						04	X14
						03	X13
						02	X12
						01	X11
						00	X10

Model	FA1-TE2SV16XY		FA1-TE2SD32XY				FA1-TE2SD40P			
Module	RY41NT2P RY41NT2H									
Cable	$\begin{aligned} & \text { FA-CBL**FM2LV } \\ & \text { FA-CBL**FM2V } \end{aligned}$		FA-CBL**FMV				FA-CBL**FMV-M			
Signal	No.	Signal								
	C22	COM	C14	V+	C24	COM	39	V+	40	COM
	C21	COM	C13	V+	C23	COM	37	V+	38	COM
	C12	V+	C12	V+	C22	COM	35	NC	36	NC
	C11	V+	C11	V+	C21	COM	33	NC	34	NC
	OF	YOF	0F	YOF	1 F	Y1F	31	YOF	32	Y1F
	OE	YOE	OE	YOE	1E	Y1E	29	YOE	30	Y1E
	OD	YOD	OD	YOD	1D	Y1D	27	YOD	28	Y1D
	OC	YOC	0 C	YOC	1C	Y1C	25	YOC	26	Y1C
	OB	YOB	OB	YOB	1B	Y1B	23	YOB	24	Y1B
	OA	YOA	OA	YOA	1A	Y1A	21	YOA	22	Y1A
	09	Y09	09	Y09	19	Y19	19	Y09	20	Y19
	08	Y08	08	Y08	18	Y18	17	Y08	18	Y18
	07	Y07	07	Y07	17	Y17	15	Y07	16	Y17
	06	Y06	06	Y06	16	Y16	13	Y06	14	Y16
	05	Y05	05	Y05	15	Y15	11	Y05	12	Y15
	04	Y04	04	Y04	14	Y14	9	Y04	10	Y14
	03	Y03	03	Y03	13	Y13	7	Y03	8	Y13
	02	Y02	02	Y02	12	Y12	5	Y02	6	Y12
	01	Y01	01	Y01	11	Y11	3	Y01	4	Y11
	00	Y00	00	Y00	10	Y10	1	Y00	2	Y10
	No.	Signal								
	C22	COM								
	C21	COM								
	C12	V+								
	C11	V+								
	OF	Y1F								
	OE	Y1E								
	OD	Y1D								
	OC	Y1C								
	OB	Y1B								
	0A	Y1A								
	09	Y19								
	08	Y18								
	07	Y17								
	06	Y16								
	05	Y15								
	04	Y14								
	03	Y13								
	02	Y12								
	01	Y11								
	00	Y10								

(3) Analog-Digital Converter Module / Digital-Analog Converter Module

Model	FA1-TE2SD40P								FA1-TE2SV20P				
Module	$\begin{aligned} & \text { R60AD6-DG } \\ & \text { Q66AD-DG } \end{aligned}$				$\begin{aligned} & \text { R60AD8-G } \\ & \text { R60AD16-G } \\ & \text { Q68AD-G } \end{aligned}$				R60ADV8 R60ADI8 Q68ADV Q68ADI			Q62AD-DGH	
Cable	FA-CBL**Q66ADDG				FA-CBL**Q68ADGN				$\begin{aligned} & \text { FA-CBL**Q68ADT } \\ & \text { FA-Q6TCA + FA-CBL**Q68ADA } \end{aligned}$			FA-CBL**Q64DAT	
Signal	No.	Signal	No.	Signal	No.	Signal	No.	Signal		No.	Signal	No.	Signal
	39	DC24V	40	DC24G	39	NC	40	NC		20	NC	20	NC
	37	NC	38	NC	37	$\begin{gathered} \text { CH8 } \\ \text { Is } \end{gathered}$	38	$\begin{gathered} \hline \text { CH8 } \\ \mathrm{I}+ \end{gathered}$		19	NC	19	NC
	35	NC	36	NC	35	$\begin{aligned} & \mathrm{CH} 8 \\ & \mathrm{~V}+ \end{aligned}$	36	$\begin{aligned} & \hline \mathrm{CH} 8 \\ & \text { V-/I- } \end{aligned}$		18	NC	18	FG
	33	$\begin{gathered} \mathrm{CH} 6 \\ \mathrm{I}-/ \mathrm{CHK} \text { - } \end{gathered}$	34	NC	33	$\begin{gathered} \hline \mathrm{CH} 7 \\ \text { Is } \end{gathered}$	34	$\begin{gathered} \hline \mathrm{CH7} \\ \mathrm{I}+ \end{gathered}$		17	NC	17	24G
	31	$\underset{\mathrm{P}}{\mathrm{CH} 6}$	32	$\begin{gathered} \mathrm{CH} 6 \\ \mathrm{I}+/ \mathrm{CHK}+ \end{gathered}$	31	$\begin{aligned} & \text { CH7 } \\ & \mathrm{V}+ \end{aligned}$	32	$\begin{aligned} & \mathrm{CH} 7 \\ & \mathrm{~V}-\mathrm{I}- \end{aligned}$		16	$\begin{gathered} \text { CH8 } \\ \text { V-/I- } \end{gathered}$	16	24 V
	29	NC	30	NC	29	NC	30	NC		15	$\begin{gathered} \hline \text { CH8 } \\ \text { V+/I+ } \end{gathered}$	15	NC
	27	$\begin{gathered} \mathrm{CH} 5 \\ \mathrm{I}-/ \mathrm{CHK}- \\ \hline \end{gathered}$	28	NC	27	$\begin{gathered} \hline \text { CH6 } \\ \text { Is } \end{gathered}$	28	$\begin{gathered} \mathrm{CH} 6 \\ \mathrm{I}+ \\ \hline \end{gathered}$		14	$\begin{aligned} & \mathrm{CH} 7 \\ & \mathrm{~V} \text {-/I- } \\ & \hline \end{aligned}$	14	NC
	25	$\underset{\mathrm{P}}{\mathrm{CH} 5}$	26	$\begin{array}{\|c\|} \hline \mathrm{CH} 5 \\ \mathrm{I}+/ \mathrm{CHK}+ \\ \hline \end{array}$	25	$\begin{aligned} & \hline \text { CH6 } \\ & \mathrm{V}+ \end{aligned}$	26	$\begin{aligned} & \hline \text { CH6 } \\ & \text { V-/I- } \end{aligned}$		13	$\begin{gathered} \mathrm{CH} 7 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{gathered}$	13	NC
	23	NC	24	NC	23	$\begin{gathered} \text { CH5 } \\ \text { Is } \end{gathered}$	24	$\begin{gathered} \hline \mathrm{CH} 5 \\ \mathrm{I}+ \end{gathered}$		12	$\begin{aligned} & \hline \text { CH6 } \\ & \text { V-/I- } \end{aligned}$	12	NC
	21	$\begin{gathered} \mathrm{CH} 4 \\ \mathrm{I}-/ \mathrm{CHK} \text { - } \\ \hline \end{gathered}$	22	NC	21	$\begin{aligned} & \text { CH5 } \\ & \mathrm{V}+ \end{aligned}$	22	$\begin{aligned} & \hline \text { CH5 } \\ & \mathrm{V}-\mathrm{II}- \\ & \hline \end{aligned}$		11	$\begin{gathered} \hline \mathrm{CH} 6 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{gathered}$	11	NC
	19	$\begin{gathered} \mathrm{CH} 4 \\ \mathrm{P} \end{gathered}$	20	$\begin{gathered} \mathrm{CH} 4 \\ \mathrm{I}+/ \mathrm{CHK}+ \\ \hline \end{gathered}$	19	NC	20	NC		10	$\begin{gathered} \mathrm{CH} 5 \\ \mathrm{~V}-/ \mathrm{I}- \\ \hline \end{gathered}$	10	$\underset{\text { CH2 }}{\text { I }}$
	17	NC	18	NC	17	$\begin{gathered} \mathrm{CH} 4 \\ \text { Is } \\ \hline \end{gathered}$	18	$\begin{gathered} \mathrm{CH} 4 \\ \mathrm{I}+ \\ \hline \end{gathered}$		9	$\begin{gathered} \text { CH5 } \\ \mathrm{V}+/ \mathrm{I}+ \\ \hline \end{gathered}$	9	$\underset{\mathrm{P}}{\mathrm{CH} 2}$
	15	$\begin{array}{\|c\|} \hline \mathrm{CH} 3 \\ \mathrm{I}-/ \mathrm{CHK}- \\ \hline \end{array}$	16	NC	15	$\begin{aligned} & \hline \mathrm{CH} 4 \\ & \mathrm{~V}+ \end{aligned}$	16	$\begin{gathered} \hline \mathrm{CH} 4 \\ \mathrm{~V}-/ \mathrm{I}- \end{gathered}$		8	$\begin{gathered} \mathrm{CH} 4 \\ \mathrm{~V} \text {-/I- } \end{gathered}$	8	NC
	13	$\begin{gathered} \hline \mathrm{CH} 3 \\ \mathrm{P} \\ \hline \end{gathered}$	14	$\begin{gathered} \hline \mathrm{CH} 3 \\ \mathrm{I}+/ \mathrm{CHK}+ \\ \hline \end{gathered}$	13	$\begin{gathered} \hline \mathrm{CH} 3 \\ \text { Is } \\ \hline \end{gathered}$	14	$\begin{gathered} \hline \mathrm{CH} 3 \\ \mathrm{I}+ \\ \hline \end{gathered}$		7	$\begin{array}{\|c\|} \hline \mathrm{CH} 4 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{array}$	7	NC
	11	NC	12	NC	11	$\begin{aligned} & \hline \text { CH3 } \\ & \text { V+ } \end{aligned}$	12	$\begin{gathered} \hline \mathrm{CH} 3 \\ \mathrm{~V}-/ \mathrm{I}- \end{gathered}$		6	$\begin{aligned} & \hline \mathrm{CH} 3 \\ & \mathrm{~V}-/ \mathrm{I}- \end{aligned}$	6	NC
	9	$\begin{gathered} \mathrm{CH} 2 \\ \mathrm{I}-/ \mathrm{CHK}- \end{gathered}$	10	NC	9	NC	10	NC		5	$\begin{gathered} \hline \mathrm{CH} 3 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{gathered}$	5	NC
	7	$\begin{gathered} \mathrm{CH} 2 \\ \mathrm{P} \\ \hline \end{gathered}$	8	$\begin{array}{\|c\|} \hline \mathrm{CH} 2 \\ \mathrm{I}+/ \mathrm{CHK}+ \\ \hline \end{array}$	7	$\begin{gathered} \hline \mathrm{CH}_{2} \\ \text { Is } \\ \hline \end{gathered}$	8	$\begin{gathered} \hline \mathrm{CH} 2 \\ \mathrm{I}+ \\ \hline \end{gathered}$		4	$\begin{gathered} \mathrm{CH} 2 \\ \mathrm{~V}-/ \mathrm{I}- \\ \hline \end{gathered}$	4	NC
	5	NC	6	NC	5	$\begin{aligned} & \hline \mathrm{CH} 2 \\ & \mathrm{~V}+ \\ & \hline \end{aligned}$	6	$\begin{aligned} & \text { CH2 } \\ & \text { V-/I- } \end{aligned}$		3	$\begin{gathered} \mathrm{CH} 2 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{gathered}$	3	NC
	3	$\begin{gathered} \mathrm{CH} 1 \\ \mathrm{I}-/ \mathrm{CHK} \text { - } \\ \hline \end{gathered}$	4	NC	3	$\begin{gathered} \mathrm{CH} 1 \\ \text { Is } \\ \hline \end{gathered}$	4	$\begin{gathered} \mathrm{CH} 1 \\ \mathrm{I}+ \\ \hline \end{gathered}$		2	$\begin{gathered} \text { CH1 } \\ \text { V-/I- } \\ \hline \end{gathered}$	2	$\underset{\mathrm{CH} 1}{\mathrm{C}}$
	1	$\begin{gathered} \mathrm{CH} 1 \\ \mathrm{P} \\ \hline \end{gathered}$	2	$\begin{array}{\|c\|} \hline \mathrm{CH} 1 \\ \mathrm{I}+/ \mathrm{CHK}+ \\ \hline \end{array}$	${ }^{*} 1$	$\begin{gathered} \hline \mathrm{CH} 1 \\ \mathrm{~V}+ \\ \hline \end{gathered}$	2	$\begin{gathered} \text { CH1 } \\ \text { V-/I- } \\ \hline \end{gathered}$		1	$\begin{array}{\|c} \hline \mathrm{CH} 1 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{array}$	1	CH1

*1. For current input, connect the ($\mathrm{V}+$) and (Is) terminals.

Using the Is terminal can reduce the error difference between Va and Vb caused by wiring resistance (r).

Model	FA1-TE2SV20P						
Module	$\begin{aligned} & \text { R60DA4 } \\ & \text { R60DAH4 } \\ & \text { Q64DAN } \\ & \text { Q64DAH } \end{aligned}$		Q62DAN		$\begin{aligned} & \text { R60DAI8 } \\ & \text { R60DAV8 } \\ & \text { Q68DAIN } \\ & \text { Q68DAVN } \end{aligned}$		
Cable	FA-CBL**Q64DAT				$\begin{aligned} & \text { FA-CBL**Q68DAT } \\ & \text { FA-Q6TCA + FA-CBL**Q68DAA } \end{aligned}$		
Signal		Signal		Signal		Signal	
		NC		nc		nc	
		NC		nc		nc	
		NC		nc		24 G	
		24 G		24 G		+24V	
		+24V		+24V		$\begin{aligned} & \text { CH8 } \\ & \text { COM } \end{aligned}$	
		$\stackrel{\text { CH4 }}{\text { I+ }}$		NC		$\begin{gathered} \mathrm{CH} 8 \\ \mathrm{~V}+/ \mathrm{I}+ \end{gathered}$	
		$\begin{aligned} & \text { CH4 } \\ & \text { COM } \end{aligned}$		NC		$\begin{aligned} & \mathrm{CH7} \\ & \mathrm{COM} \end{aligned}$	
		$\begin{aligned} & \mathrm{CH} 4 \\ & \mathrm{~V}+ \end{aligned}$		NC		$\begin{gathered} \mathrm{CH7} \\ \mathrm{~V}+/ \mathrm{It}+ \end{gathered}$	
		NC		NC		$\begin{aligned} & \text { CH6 } \\ & \text { COM } \end{aligned}$	
		$\underset{\mathrm{I}+\mathrm{CH}}{ }$		NC		$\begin{gathered} \mathrm{CH} 6 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{gathered}$	
		$\begin{aligned} & \text { CH3 } \\ & \text { COM } \end{aligned}$		NC		CH5 COM 	
		$\begin{aligned} & \mathrm{CH3} 3 \\ & \mathrm{v}+ \end{aligned}$		NC		$\begin{gathered} \mathrm{CH5} 5 \\ \mathrm{~V}+/ \mathrm{I}+ \end{gathered}$	
		NC		NC		$\begin{aligned} & \text { CH4 } \\ & \text { COM } \end{aligned}$	
		$\begin{gathered} \mathrm{CH} 2 \\ \mathrm{I}+ \end{gathered}$		$\begin{gathered} \mathrm{CH} 2 \\ \mathrm{I}+ \end{gathered}$		$\begin{array}{\|c\|} \hline \mathrm{CH} 4 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{array}$	
		$\begin{aligned} & \mathrm{CH}^{\mathrm{CH}} \\ & \mathrm{COM} \end{aligned}$		$\begin{aligned} & \mathrm{CH} 2 \\ & \text { COM } \\ & \hline \end{aligned}$		CH3 COM	
		$\begin{gathered} \mathrm{CH} 2 \\ \mathrm{~V}+ \end{gathered}$		$\begin{aligned} & \mathrm{CH2} \\ & \mathrm{CH} \end{aligned}$			
		NC		NC		$\begin{aligned} & \hline \mathrm{CH} 2 \\ & \mathrm{COM} \end{aligned}$	
		$\begin{gathered} \mathrm{CH} 1 \\ \mathrm{I}+ \end{gathered}$		$\begin{gathered} \mathrm{CH} 1 \\ \mathrm{I}+ \\ \hline \end{gathered}$		$\begin{array}{\|c\|} \hline \mathrm{CH} 2 \\ \mathrm{~V}+/ \mathrm{I}+ \\ \hline \end{array}$	
		$\begin{aligned} & \begin{array}{c} \mathrm{CH} 1 \\ \text { COM } \end{array} \end{aligned}$		$\begin{aligned} & \text { CH1 } \\ & \text { COM } \end{aligned}$		$\begin{array}{\|l\|l\|} \hline \mathrm{V}+\mathrm{If}+ \\ \hline \mathrm{CH} 1 \\ \hline \mathrm{COM} \\ \hline \end{array}$	
		$\begin{aligned} & \begin{array}{c} \mathrm{CH} 1 \\ \mathrm{~V} \end{array} \end{aligned}$		$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{~V}+ \end{aligned}$		$\begin{gathered} \mathrm{CH1} 1 \\ \mathrm{~V}+\mathrm{I}++ \end{gathered}$	

(5) Servo external signals interface module

Model	FA1-TE2SD40P			
Module	$\begin{aligned} & \text { Q172DLX } \\ & \text { Q172LX } \end{aligned}$			
Cable	FA-SCBL**FMV-M			
Signal	No.	Signal	No.	Signal
	39	COM	40	NC
	37	COM	38	NC
	35	NC	36	NC
	33	NC	34	NC
	31	$\begin{array}{\|c\|} \hline \text { DOG4/ } \\ \text { CHANGE4 } \\ \hline \end{array}$	32	$\begin{gathered} \hline \text { DOG8/ } \\ \text { CHANGE8 } \end{gathered}$
	29	STOP4	30	STOP8
	27	RLS4	28	RLS8
	25	FLS4	26	FLS8
	23	$\begin{array}{\|c\|} \hline \text { DOG3/ } \\ \text { CHANGE3 } \end{array}$	24	$\begin{gathered} \hline \text { DOG7I } \\ \text { CHANGE7 } \end{gathered}$
	21	STOP3	22	STOP7
	19	RLS3	20	RLS7
	17	FLS3	18	FLS7
	15	$\begin{array}{\|c\|} \hline \text { DOG2/ } \\ \text { CHANGE2 } \end{array}$	16	$\begin{gathered} \hline \text { DOG6/ } \\ \text { CHANGE6 } \end{gathered}$
	13	STOP2	14	STOP6
	11	RLS2	12	RLS6
	9	FLS2	10	FLS6
	7	$\begin{array}{\|c\|} \hline \text { DOG1/ } \\ \text { CHANGE1 } \end{array}$	8	
	5	STOP1	6	STOP5
	3	RLS1	4	RLS5
	1	FLS1	2	FLS5

(6) Manual pulse generator interface module

Model	FA1-TE2SD40P			
Module	$\begin{aligned} & \text { Q173DPX } \\ & \text { Q173PX } \\ & \text { Q173PX-S1 } \end{aligned}$			
Cable	FA-SCBL**FMV-M			
Signal	No.	Signal	No.	Signal
	39	FG	40	FG
	37	TREN3-	38	TREN3+
	35	TREN2-	36	TREN2+
	33	TREN1-	34	TREN1+
	31	NC	32	NC
	29	HB3N	30	HB3P
	27	HA3N	28	HA3P
	25	5 V	26	HPSEL3
	23	SG	24	SG
	21	HB3	22	HA3
	19	HB2N	20	HB2P
	17	HA2N	18	HA2P
	15	5 V	16	HPSEL2
	13	SG	14	SG
	11	HB2	12	HA2
	9	HB1N	10	HB1P
	7	HA1N	8	HA1P
	5	5 V	6	HPSEL1
	3	SG	4	SG
	1	HB1	2	HA1

(7) Safety signal module

Model	FA1-TE2SD40P							
Module	Q173DSXY							
Cable	FA-SCBL**FMV-M							
Signal	Motion IO connector				PLC IO connector			
	No.	Signal	No.	Signal	No.	Signal	No.	Signal
	39	24VDC (COM1)	40	$\begin{gathered} \hline 0 \mathrm{~V} \\ \text { (COM2) } \end{gathered}$	39	$\begin{aligned} & \hline 24 \mathrm{VDC} \\ & \text { (COM1) } \end{aligned}$	40	$\begin{gathered} \hline \mathrm{OV} \\ \text { (COM2) } \end{gathered}$
	37	$\begin{aligned} & \hline 24 \mathrm{VDC} \\ & \text { (COM1) } \end{aligned}$	38	$\begin{gathered} \hline 0 \mathrm{~V} \\ \text { (COM2) } \end{gathered}$	37	24VDC (COM1)	38	$\begin{gathered} \hline \mathrm{OV} \\ \text { (COM2) } \end{gathered}$
	35	NC	36	NC	35	NC	36	NC
	33	NC	34	NC	33	NC	34	NC
	31	$\begin{gathered} \hline \text { MC-YOF/ } \\ \text { XOF } \end{gathered}$	32	$\begin{gathered} \hline \text { MC-Y1F/ } \\ \text { X1F } \end{gathered}$	31	$\begin{gathered} \hline \text { PLC-YOF/ } \\ \text { XOF } \end{gathered}$	32	$\begin{gathered} \hline \text { PLC-Y1F/ } \\ \text { X1F } \end{gathered}$
	29	$\begin{gathered} \hline \text { MC-YOE/ } \\ \text { XOE } \end{gathered}$	30	$\begin{gathered} \hline \text { MC-Y1E/ } \\ \text { X1E } \end{gathered}$	29	$\begin{gathered} \hline \text { PLC-YOE/ } \\ \text { XOE } \end{gathered}$	30	$\begin{gathered} \hline \text { PLC-Y1E/ } \\ \text { X1E } \end{gathered}$
	27	$\begin{gathered} \hline \text { MC-YOD/ } \\ \text { XOD } \end{gathered}$	28	$\begin{gathered} \hline \text { MC-Y1D/ } \\ \text { X1D } \end{gathered}$	27	$\begin{gathered} \hline \text { PLC-YOD/ } \\ \text { XOD } \end{gathered}$	28	$\begin{gathered} \hline \text { PLC-Y1D/ } \\ \text { X1D } \end{gathered}$
	25	$\begin{gathered} \text { MC-YOC/ } \\ \text { XOC } \end{gathered}$	26	$\begin{gathered} \hline \text { MC-Y1C/ } \\ \text { X1C } \end{gathered}$	25	$\begin{gathered} \hline \text { PLC-YOC/ } \\ \text { XOC } \end{gathered}$	26	$\begin{gathered} \hline \text { PLC-Y1C/ } \\ \text { X1C } \end{gathered}$
	23	$\begin{gathered} \hline \text { MC-YOB/ } \\ \text { XOB } \end{gathered}$	24	$\begin{gathered} \hline \text { MC-Y1B/ } \\ \text { X1B } \end{gathered}$	23	$\begin{gathered} \hline \text { PLC-YOB/ } \\ \text { XOB } \end{gathered}$	24	$\begin{gathered} \hline \text { PLC-Y1B/ } \\ \text { X1B } \end{gathered}$
	21	$\begin{gathered} \text { MC-YOA/ } \\ \mathrm{XOA} \end{gathered}$	22	$\begin{gathered} \hline \text { MC-Y1A/ } \\ \text { X1A } \end{gathered}$	21	$\begin{gathered} \hline \text { PLC-YOA/ } \\ \text { XOA } \end{gathered}$	22	$\begin{gathered} \hline \text { PLC-Y1A/ } \\ \text { X1A } \end{gathered}$
	19	MC-X09	20	MC-X19	19	PLC-X09	20	PLC-X19
	17	MC-X08	18	MC-X18	17	PLC-X08	18	PLC-X18
	15	MC-X07	16	MC-X17	15	PLC-X07	16	PLC-X17
	13	MC-X06	14	MC-X16	13	PLC-X06	14	PLC-X16
	11	MC-X05	12	MC-X15	11	PLC-X05	12	PLC-X15
	9	MC-X04	10	MC-X14	9	PLC-X04	10	PLC-X14
	7	MC-X03	8	MC-X13	7	PLC-X03	8	PLC-X13
	5	MC-X02	6	MC-X12	5	PLC-X02	6	PLC-X12
	3	MC-X01	4	MC-X11	3	PLC-X01	4	PLC-X11
	1	MC-X00	2	MC-X10	1	PLC-X00	2	PLC-X10

8. APPLICABLE SOLDERLESS TERMINALS (Ferrule)

Type		Applicable ferrule*1	Crimp tool
Manufacturer	Applicable wire size (mm^{2} / AWG)		
PHOENIX CONTACT	$0.25 / 24$	Al 0,25-8 YE	CRIMPFOX 6
	0.3,0.34 / 22	AI 0,34-8 TQ	
	0.5/20	Al 0,5-8 WH	
	$0.75 / 18$	Al 0.75-8 GY	
WAGO	$0.08 \sim 0.34 / 28 \sim 22$	216-302	206-220
	0.34/24, 22	216-302	$\begin{gathered} 206-1204 \\ 206-204 \end{gathered}$
	0.5/22, 20	216-201	
	0.75/20, 18	216-202	

*1 : For UL certification, suitable for field wiring when a ferrule is not used.
9. CONNECTABLE MODULES
(1) I/O modules

Programmable controller			Model	Cable	
MELSEC iQ-R	RX40C7	Positive common	FA1-TE2SV16XY	FA-CBL * * M20	
				FA-CBL * * TMV20	
				FA-CBL * * YM20	
		Negative common	FA1-TE2SV16XY	FA-CBL * * M20	
				FA-CBL * * YM20	
	RX40C7-TS	Positive common	FA1-TE2SV16XY	FA1-CB1L * * EM1F18	
		Negative common	FA1-TE2SV16XY	FA1-CB1L * * EM1F18	
	RX40NC6B	Negative common	FA1-TE2SV16XY	FA-CBL * * M20	
				FA-CBL * * TMV20	
				FA-CBL * * YM20	
	RX41C4-TS	Positive common	FA1-TE2SV16XY	FA1-CB1L * * EM2F34	
		Negative common	FA1-TE2SV16XY	FA1-CB1L * * EM2F34	
	RX70C4	Positive common	FA1-TE2SV16XY	FA-CBL * * M20	
				FA-CBL * * TMV20	
				FA-CBL * * YM20	
		Negative common	FA1-TE2SV16XY	FA-CBL * * M20	
				FA-CBL * * YM20	
	RY40NT5P		FA1-TE2SV16XY	FA-CBL * * M20	
			FA-CBL * * TMV20		
			FA-CBL * * YM20		
	RY40NT5P-TS			FA1-TE2SV16XY	FA1-CB1L * * EM1F18
	RY40PT5P-TS			FA1-TE2SV16XY	FA1-CB1L * * EM1F18
	RY41NT2P-TS		FA1-TE2SV16XY	FA1-CB1L * * EM2F34	
	RY41PT1P-TS		FA1-TE2SV16XY	FA1-CB1L * * EM2F34	
	RY41NT2P-TS		FA1-TE2SV16XY	FA1-CB1L * * EM2F34	
	RH42C4NT2P		See RX41C4 for the input sid. See RY41NT2P for the output sid.		
	$\begin{aligned} & \hline \mathrm{RX} 41 \mathrm{C} 4 \\ & \mathrm{RX} 41 \mathrm{C} 6 \mathrm{HS} \\ & \mathrm{RX} 42 \mathrm{C} 4 \end{aligned}$	Positive common	FA1-TE2SV16XY	FA-CBL * * FM2LV	
				FA-CBL * * FM2V	
			FA1-TE2SD32XY	FA-CBL * * FMV	
		Negative common	FA1-TE2SD32XY	FA-CBL * * FMVE	
		Positive /negative common shared type	FA1-TE2SD40P	FA-CBL * * FMV-M	
	RX71C4RX72C4RX61C6HS	Positive common	FA1-TE2SV16XY	FA-CBL * * FM2LV	
				FA-CBL * * FM2V	
			FA1-TE2SD32XY	FA-CBL * * FMV	
		Negative common	FA1-TE2SD32XY	FA-CBL * * FMVE	
		Positive /negative common shared type	FA1-TE2SD40P	FA-CBL * * FMV-M	
	$\begin{aligned} & \text { RY40PT5P } \\ & \text { RY40PT5B } \end{aligned}$		FA1-TE2SV16XY	FA-CBL * * M20	
				FA-CBL * * TMV20	
				FA-CBL * * YM20	
	RY41NT2PRY42NT2PRY41NT2H		FA1-TE2SV16XY	FA-CBL * * FM2LV	
				FA-CBL * * FM2V	
			FA1-TE2SD32XY	FA-CBL * * FMV	
			FA1-TE2SD40P	FA-CBL * * FMV-M	
	RY41PT1P RY42PT1P RY41PT2H		FA1-TE2SV16XY	FA-CBL * * FM2LV	
				FA-CBL * * FM2V	
			FA1-TE2SD32XY	FA-CBL * * FMV	
			FA1-TE2SD40P	FA-CBL * * FMV-M	

Programmable controller			Model	Cable
	FX5-C16EX/D	Sink input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5-C16EX/DS	Sink input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
		Source input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5-C16EYT/D	Sink output	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5-C16EYT/DSS	Source output	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5-C32ET/DSS-TS	Sink input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Source output	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Source input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
	FX5-C32ET/DS-TS	Sink output	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Sink input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Source input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
	FX5-C32EX/D	Sink input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5-C32EX/DS	Sink input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
		Source input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5-C32EX/DS-TS	Sink input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Source input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
	FX5-C32EYT/D	Sink output	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5-C32EYT/DSS	Source output	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
MELSEC iQ-F				FA-FXCBL * * MMH20
	FX5-C32EYT/DSS-TS	Source output	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
	FX5-C32EYT/D-TS	Sink output	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
	FX5UC-32MT/DSS-TS	Sink input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Source output	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Source input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
	FX5UC-32MT/DS-TS	Sink output	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Sink input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
		Source input	FA1-TE2SV16XY	FA2-CB1L * * EM1F18
	$\begin{aligned} & \text { FX5UC-32MT/D } \\ & \text { FX5-C32ET/D } \end{aligned}$	Sink output	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
		Sink input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5UC-64MT/D FX5UC-96MT/D	Sink output	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
		Sink input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5UC-32MT/DSS FX5-C32ET/DSS	Sink input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
		Source output	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
		Source input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
	FX5UC-64MT/DSS FX5UC-96MT/DSS	Sink input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
		Source output	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20
		Source input	FA1-TE2SV16XY	FA2-CB1LT * * MM1H20
				FA-FXCBL * * MMH20

	Programmable controller		Model	Cable	
MELSEC-L	LH42C4NT1P		See LX41C4 for the input side. See LY41NT1P for the input side.		
	LH42C4PT1P		See LX41C4 for the input side. See LY41NT1P for the input side.		
	LX40C6	Positive common	FA1-TE2SV16XY	FA-CBL * * M20	
				FA-CBL * * YM20	
		Negative common	FA1-TE2SV16XY	FA-CBL * * M20	
				FA-CBL * * YM20	
	LY40NT5P		FA1-TE2SV16XY	FA-CBL * * M20	
			FA-CBL * * YM20		
	LY40PT5P			FA1-TE2SV16XY	FA-CBL * * M20
			FA-CBL * * YM20		
	$\begin{array}{\|l\|} \hline \text { LX41C4 } \\ \text { LX42C4 } \end{array}$	Positive common	FA1-TE2SV16XY	FA-CBL * * FM2LV	
				FA-CBL * * FM2V	
			FA1-TE2SD32XY	FA-CBL * * FMV	
		Negative common	FA1-TE2SD32XY	FA-CBL * * FMVE	
		Positive /negative common shared type	FA1-TE2SD40P	FA-CBL * * FMV-M	
	$\begin{aligned} & \text { LY41NT1P } \\ & \text { LY42NT1P } \end{aligned}$		FA1-TE2SV16XY	FA-CBL * * FM2LV	
			FA-CBL * * FM2V		
			FA1-TE2SD32XY	FA-CBL * * FMV	
			FA1-TE2SD40P	FA-CBL * * FMV-M	
	$\begin{aligned} & \text { LY41PT1P } \\ & \text { LY42PT1P } \end{aligned}$			FA1-TE2SV16XY	FA-CBL * * FM2LV
			FA-CBL * * FM2V		
			FA1-TE2SD32XY	FA-CBL * * FMV	
			FA1-TE2SD40P	FA-CBL * * FMV-M	
	L02SCPU		FA1-TE2SV20P	FA-SCBL**M2LV-LB	
	L02SCPU-P				
	L02CPU				
	L02CPU-P				
	L06CPU				
	L06CPU-P				
	L26CPU				
	L26CPU-PL26CPU-BT				
	L26CPU-PBT		FA1-TE2SD40P	FA-SCBL * * FMV-M	
MELSEC-F	FX2NC-16EX	Sink input	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX2NC-16EYT	Sink output	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX2NC-16EYT-DSS	Source output	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX2NC-32EX	Sink input	FA1-TE2SV16XY	FA-FXCBL * * MMH20	
	FX2NC-32EYT	Sink output	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX2NC-32EYT-DSS	Source output	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX3GC-32MT/D				
	FX3UC-16MT/D				
	FX3UC-32MT/D FX3UC-32MT-LT	Sink output	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX3UC-32MT-LT2				
	FX3UC-64MT/D				
	FX3UC-96MT/D	Sink input	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX3GC-32MT/DSS	Sink input	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX3UC-16MT/DSS	Source output	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX3UC-32MT/DSS	Source input	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX3UC-64MT/DSS	Sink input	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX3UC-96MT/DSS	Source output	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
		Source input	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX2NC-16EX-DS	Sink input	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	
	FX2NC-32EX-DS	Source input	FA1-TE2SV16XY	FA-FXCBL * * MMH2O	

(2) CC-Link modules

Programmable controller			Model	Cable
CC-Link IE TSN	NZ2GN2S1-16D	Positive common	FA1-TE2SV16XY	FA3-CB1L * * EM1F18X
	NZ2GN2S1-16T		FA1-TE2SV16XY	FA3-CB1L * * EM1F18Y
	NZ2GN2S1-16TE		FA1-TE2SV16XY	FA3-CB1L * * EM1F18Y
	NZ2GN2S1-32D	Positive common	FA1-TE2SV16XY	FA3-CB1L * * EM2F34X
	NZ2GN2S1-32DT	Output part	FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
		Input part	FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
	NZ2GN2S1-32DTE	Output part	FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
		Input part	FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
	NZ2GN2S1-32T		FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
	NZ2GN2S1-32TE		FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
	NZ2GNCF1-32D	Positive common	FA1-TE2SV16XY	FA-CBL * * FM2H
				FA-CBL * * FM2LH
			FA1-TE2SD32XY	FA-CBL * * FMH
				FA-FCBL * * FMH
		Positive /negative common shared type	FA1-TE2SD40P	FA-CBL * * FMH-M
	NZ2GNCF1-32T	Sink output	FA1-TE2SV16XY	FA-CBL * * FM2H
				FA-CBL * * FM2LH
			FA1-TE2SD32XY	FA-CBL * * FMH
				FA-FCBL * * FMH
			FA1-TE2SD40P	FA-CBL * * FMH-M
CC-Link IE FieldBasic	NZ2MF2S1-32D	Positive common	FA1-TE2SV16XY	FA3-CB1L * * EM2F34X
	NZ2MF2S1-32DT	Output part	FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
		Input part	FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
	NZ2MF2S1-32DTE1	Output part	FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
		Input part	FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
	NZ2MF2S1-32T		FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
	NZ2MF2S1-32TE1		FA1-TE2SV16XY	FA3-CB1L * * EM2F34Y
CC-Link IE Field	NZ2GFCF1-32D	Positive common	FA1-TE2SV16XY	FA-CBL * * FM2H
				FA-CBL * * FM2LH
			FA1-TE2SD32XY	FA-CBL * * FMH
				FA-FCBL * * FMH
		Positive /negative common shared type	FA1-TE2SD40P	FA-CBL * * FMH-M
	NZ2GFCF1-32DT	Input/Output	FA1-TE2SD40P	FA-CBL * * FMH-M
	NZ2GFCF1-32T	Sink output	FA1-TE2SV16XY	FA-CBL * * FM2H
				FA-CBL * * FM2LH
			FA1-TE2SD32XY	FA-CBL * * FMH
				FA-FCBL * * FMH
			FA1-TE2SD40P	FA-CBL * * FMH-M
CC-Link	AJ65SBTCF1-32D	Positive common	FA1-TE2SV16XY	FA-CBL * * FM2H
				FA-CBL * * FM2LH
			FA1-TE2SD32XY	FA-CBL * * FMH
				FA-FCBL * * FMH
		Positive /negative common shared type	FA1-TE2SD40P	FA-CBL * * FMH-M
	AJ65SBTCF1-32DT	Input/Output	FA1-TE2SD40P	FA-CBL * * FMH-M
	AJ65SBTCF1-32T AJ65BTC1-32T	Sink output	FA1-TE2SV16XY	FA-CBL * * FM2H
				FA-CBL * * FM2LH
			FA1-TE2SD32XY	FA-CBL * * FMH
				FA-FCBL * * FMH
			FA1-TE2SD40P	FA-CBL * * FMH-M
	AJ65VBTCF1-32DT1	Input/Output	FA1-TE2SD40P	FA-CBL * * FMH-M

(3) Analog-Digital Converter Modules / Digital -Analog Converter Modules

Programmable controller		Model	Cable
MELSEC iQ-R	R60AD6-DG	FA1-TE2SD40P	FA-CBL * * Q66ADDG
	$\begin{aligned} & \text { R60AD8-G } \\ & \text { R60AD16-G } \end{aligned}$	FA1-TE2SD40P	FA-CBL * * Q68ADGN
	R60ADI8	FA1-TE2SV20P	FA-CBL * * Q68ADT
			$\begin{aligned} & \text { FA-Q6TCA + } \\ & \text { FA-CBL * * Q68ADA } \end{aligned}$
	R60ADV8	FA1-TE2SV20P	FA-CBL * * Q68ADT
			$\begin{aligned} & \text { FA-Q6TCA + } \\ & \text { FA-CBL * * Q68ADA } \end{aligned}$
	R60DA4	FA1-TE2SV20P	FA-CBL * * Q64DAT
	$\begin{aligned} & \hline \text { R60DA8-G } \\ & \text { R60DA16-G } \\ & \hline \end{aligned}$	FA1-TE2SD40P	FA1-CBL * * R60DA8G
	R60DAH4	FA1-TE2SV20P	FA-CBL * * Q64DAT
	R60DAI8	FA1-TE2SV20P	FA-CBL * * Q68DAT
			$\begin{aligned} & \text { FA-Q6TCA + } \\ & \text { FA-CBL * * Q68DAA } \end{aligned}$
	R60DAV8	FA1-TE2SV20P	FA-CBL * * Q68DAT
			$\begin{aligned} & \text { FA-Q6TCA + } \\ & \text { FA-CBL * * Q68DAA } \end{aligned}$
MELSEC-Q	Q62AD-DGH	FA1-TE2SV20P	FA-CBL * * Q64DAT
	$\begin{aligned} & \text { Q64DAN } \\ & \text { Q64DAH } \\ & \text { Q62DAN } \\ & \hline \end{aligned}$	FA1-TE2SV20P	FA-CBL * * Q64DAT
	Q66AD-DG	FA1-TE2SD40P	FA-CBL * * Q66ADDG
	Q66DA-G	FA1-TE2SD40P	FA-CBL * * Q66DAG
	Q68AD-G	FA1-TE2SD40P	FA-CBL * * Q68ADGN
	Q68ADI	FA1-TE2SV20P	FA-CBL * * Q68ADT
			$\begin{aligned} & \text { FA-Q6TCA + } \\ & \text { FA-CBL * * Q68ADA } \end{aligned}$
	Q68ADV	FA1-TE2SV20P	FA-CBL * * Q68ADT
			$\begin{aligned} & \text { FA-Q6TCA + } \\ & \text { FA-CBL * * Q68ADA } \end{aligned}$
	Q68DAIN	FA1-TE2SV20P	FA-CBL * * Q68DAT
			$\begin{aligned} & \text { FA-Q6TCA + } \\ & \text { FA-CBL * * Q68DAA } \end{aligned}$
	Q68DAVN	FA1-TE2SV20P	FA-CBL * * Q68DAT
			$\begin{aligned} & \text { FA-Q6TCA + } \\ & \text { FA-CBL * * Q68DAA } \end{aligned}$

(4) High-Speed Counter Modules

Programmable controller	Model	Cable	
MELSEC iQ-R	RD62P2 RD62D2 RD62P2E	FA1-TE2SD40P	FA-SCBL * * FMV-M
MELSEC-L	LD62 LD62D	FA1-TE2SD40P	FA-SCBL * * FMV-M
MELSEC-Q	QD62 QD62E QD62D	FA1-TE2SD40P	FA-SCBL * * FMV-M

(5) Servo external signals interface module

Programmable controller		Model	Cable
MELSEC-Q	Q172DLX Q172LX	FA1-TE2SD40P	FA-SCBL $* *$ FMV-M

(6) Manual pulse generator interface module

Programmable controller		Model	Cable
MELSEC-Q	Q173DPX Q173PX Q173PX-S1	FA1-TE2SD40P	FA-SCBL $* *$ FMV-M

(7) Safety signal module

Programmable controller		Model	Cable
MELSEC-Q	Q173DSXY	FA1-TE2SD40P	FA-SCBL $* *$ FMV-M

(8) NC modules

Programmable controller			Model
M800W M80W	FCU8-DX220	Cable	
	FCU8-DX230		
FCU8-DX651			

(9) Other PLC

Programmable controller		Model	Cable
Omron	$\begin{aligned} & \hline \text { CJ1W-ID231 } \\ & \text { CJ1W-ID261 } \end{aligned}$	FA1-TE2SD40P	FA-CBL * * FMH
	CJ1W-ID232 CJ1W-ID262 CJ1W-ID233	FA1-TE2SD40P	FA-CBL * * MMH-R
	CJ1W-MD261	FA1-TE2SD40P	FA-CBL * * FMH
	CJ1W-MD263 CJ1W-MD563	FA1-TE2SD40P	FA-CBL * * MMH-R
	CJ1W-OD231 CJ1W-OD261	FA1-TE2SD40P	FA-CBL * * FMH
	CJ1W-OD232 CJ1W-OD233 CJ1W-OD262 CJ1W-OD263 CJ1W-OD234	FA1-TE2SD40P	FA-CBL * * MMH-R
	$\begin{aligned} & \hline \text { CS1W-ID231 } \\ & \text { CS1W-ID261 } \end{aligned}$	FA1-TE2SD40P	FA-CBL * * FMH
	CS1W-MD261 CS1W-MD262 CS1W-MD561	FA1-TE2SD40P	FA-CBL * * FMH
	$\begin{aligned} & \hline \text { CS1W-OD231 } \\ & \text { CS1W-OD232 } \\ & \text { CS1W-OD261 } \\ & \text { CS1W-OD262 } \\ & \hline \end{aligned}$	FA1-TE2SD40P	FA-CBL * * FMH
	$\begin{array}{\|l\|} \hline \text { DRT2-ID32ML } \\ \text { DRT2-ID32ML-1 } \end{array}$	FA1-TE2SD40P	FA-CBL * * MMH-R
	$\begin{aligned} & \hline \text { DRT2-MD32ML } \\ & \text { DRT2-MD32ML-1 } \\ & \hline \end{aligned}$	FA1-TE2SD40P	FA-CBL * * MMH-R
	$\begin{aligned} & \hline \text { DRT2-OD32ML } \\ & \text { DRT2-OD32ML-1 } \\ & \hline \end{aligned}$	FA1-TE2SD40P	FA-CBL * * MMH-R
	$\begin{aligned} & \text { GT1-ID32ML } \\ & \text { GT1-ID32ML-1 } \end{aligned}$	FA1-TE2SD40P	FA-CBL * * FMH
	$\begin{aligned} & \text { GT1-OD32ML } \\ & \text { GT1-OD32ML-1 } \end{aligned}$	FA1-TE2SD40P	FA-CBL * * FMH
	$\begin{aligned} & \text { SRT2-ID32ML } \\ & \text { SRT2-ID32ML-1 } \\ & \hline \end{aligned}$	FA1-TE2SD40P	FA-CBL * * MMH-R
	$\begin{aligned} & \text { SRT2-MD32ML } \\ & \text { SRT2-MD32ML-1 } \end{aligned}$	FA1-TE2SD40P	FA-CBL * * MMH-R
	$\begin{aligned} & \hline \text { SRT2-OD32ML } \\ & \text { SRT2-OD32ML-1 } \end{aligned}$	FA1-TE2SD40P	FA-CBL * * MMH-R

Programmable controller		Model	Cable
Yocogawa Electric	F3WD64-3P F3WD64-4P	FA1-TE2SD40P	FA-CBL * * FMH-FY
	F3XD32-3F F3XD32-4F F3XD32-5F F3XD64-3F F3XD64-4F F3XD64-6M	FA1-TE2SD40P	FA-CBL * * FMH-FY
	F3YD32-1H F3YD32-1P F3YD32-1R F3YD32-1T F3YD64-1M F3YD64-1P F3YD64-1R	FA1-TE2SD40P	FA-CBL * * FMH-FY
Fuji Electric	NP1W3206T NP1W3206U NP1W6406T NP1W6406U	FA1-TE2SD40P	FA-CBL * * FMH-FY
	$\begin{array}{\|l\|} \hline \text { NP1X3206-W } \\ \text { NP1X3202-W } \\ \text { NP1X6406-W } \\ \hline \end{array}$	FA1-TE2SD40P	FA-CBL * * FMH-FY
	NP1Y32T09P1 NP1Y32U09P1 NP1Y64T09P1 NP1Y64U09P1	FA1-TE2SD40P	FA-CBL * * FMH-FY

(1) FA1-TE2SD40P/32XY

(3) FA1-TE2SV40EX

[Unit : mm]

(2) FA1-TE2SV20P/16XY

[Unit : mm]

11. PRECAUTIONS

For wiring to the terminal block, refer to the manual of the programmable controller module to be connected, published by Mitsubishi Electric.

12. TROUBLESHOOTING

When wires and ferrule terminals cannot be connected to the spring clamp terminal block

Check item	Action
Is the wire insulation processed correctly?	Check whether the processing of the wire insulation and the crimping of the ferrule terminal are correct.
Is the ferrule terminal properly crimped?	(5-3.Wiring to a spring clamp terminal block)
For stranded wires, is the push button on the spring clamp	
terminal block pressed?	Use a screwdriver to press the push button on the spring clamp terminal block and insert the stranded wire into the wire insertion slot.
	(5-3.Wiring to a spring clamp terminal block $)$

If no signal is output. / If no continuity.

Check item	Action
Is there any looseness in the mounting of the connected?	Make sure the connector is securely attached.
Is there incorrect wiring of the spring clamp terminal	Check if there are any problems with the wiring of the block?
connected device.	

If unintended signal output or continuity	
	Action
Check item	Check if there are any problems with the wiring of the connected device.
protruding wires or conductive foreign matter?	
Is there incorrect wiring of the spring clamp terminal block?	
Is there any malfunction in the connected device?	

13. GRATIS WARRANTY TERMS AND GRATIS WARRANTY RANGE

If any fault or defect (hereinafter referred to as "Failure") attributable to Mitsubishi Electric Engineering should occur within the gratis warranty period, Mitsubishi Electric Engineering shall replace the product free of charge via the distributor from whom you made your purchase.

- Gratis warranty period

The gratis warranty period of this product shall be one (1) year from the date of purchase or delivery to the designated place.
Note that the gratis warranty period shall be limited to 18 months after manufacturing, which includes six months as the distribution period in the market.
In addition, the gratis warranty period of the product after repair is the same as that of the product before repair.

- Gratis warranty range
(1) The gratis warranty range shall be limited to normal use based on the usage conditions, methods and environment, etc., defined by the terms and precautions, etc., given in the instruction manual, user's manual, and caution labels on the product.
(2) In the following cases, a repair fee shall be applied even if within the gratis warranty period.

1) Failure resulting from inappropriate storage or handling, carelessness or negligence by the user, or Failure caused by the user's hardware or software design.
2) Failure caused by unapproved modifications, etc., to the product by the user.
3) Failure that could have been avoided if, when the Mitsubishi Electric Engineering product was assembled into the user's device, safeguards defined by legal regulations applicable to the user's device or functions or structures considered standard by the industry had been provided.
4) Failure recognized as preventable if the consumed products specified in instruction manuals, etc., were normally maintained or replaced.
5) Replacement of consumable parts (relays, etc.).
6) Failure caused by external factors beyond anyone's control such as fires or abnormal voltage, and Failure caused by Force Majeure such as earthquakes, lightning, or wind and water damage.
7) Failure caused by reasons unpredictable by scientific technology standards at the time of shipment from Mitsubishi Electric Engineering.
8) Any other failure not attributable to Mitsubishi Electric Engineering or found by the user to not be attributable to Mitsubishi Electric Engineering.

14. EXCLUSION FROM LIABILITY FOR OPPORTUNITY LOSS AND SECONDARY LOSS

Regardless of the gratis warranty period, Mitsubishi Electric Engineering shall not be liable for compensation for damages arising from causes not attributable to Mitsubishi Electric Engineering, opportunity losses or lost profits incurred by the user due to Failures of Mitsubishi Electric Engineering products, damages or secondary damages arising from special circumstances, whether foreseen or unforeseen by Mitsubishi Electric Engineering, compensation for accidents, compensation for damages to products other than Mitsubishi Electric Engineering products, or compensation for replacement work, readjustment of onsite machinery and equipment, startup test runs or other duties carried out by the user.

15. TRADEMARKS

MELSEC iQ-R, MELSEC iQ-F, MELSEC, CC-Link IE Field, CC-Link IE and CC-Link are trademarks or registered trademarks of Mitsubishi Electric Corporation. Other company names and product names in the text are trademarks or registered trademarks of each company.
In some cases, trademark symbols such as 'TM' or '®' are not specified in this manual.

FOR SAFE OPERATIONS

- This product has been manufactured as a general-purpose part for general industries, and has not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger movement vehicles, consult with Mitsubishi Electric Engineering.
- This product has been manufactured under strict quality control. However, when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

MITSUBISHI ELECTRIC ENGINEERING COMPANY LIMITED

NAGOYA ENGINEERING OFFICE | 1-9, Daiko-Minami, 1-Chome, Higashi-ku, Nagoya, Aichi 461-0047 Japan Phone +81-52-6495 URL:https://www.mitsubishielectricengineering.com/

[^0]: *1: The power supply must use CLASS2 power supply or a power supply to the SELV (Safety Extra-Low Voltage) and LIM (Limited Energy Circuit) circuit.
 *2: Evaluation for UL certification is conducted under resistance load conditions.
 *3: Select wires depending on the current value used.
 *4: Use coper wires having temperature rating of $75^{\circ} \mathrm{C}$ or more for the terminal block.
 *5: For UL certification, suitable for field wiring when a ferrule is not used.

